

Copyright © The Author(s) Vol. 6, No. 3, September 2025 e-ISSN: 2774-4892

Role of Endothelial Dysfunction Marker along with Toll-like Receptors 4 (TLR-4) Polymorphism in Patients with Type 1 Diabetes Mellitus

Ibrahim Abd Ali Abdul Sada Alkinani¹, and Adnan Hamad Aubaid Al-Hamadani²

^{1, 2} Department of Medical Microbiology, College of Medicine, Al-Qadisiyah University, Iraq. Email: abrahim.alkanany@gmail.com

ABSTRACT

Keywords: E-selectin, TLR-4, Type 1 Diabetes Mellitus.

Article Information

Received: June 19, 2025; Revised: July 30, 2025; Online: September, 2025

INTRODUCTION

The immune system specifically destroys insulin-producing beta cells in the pancreas in type 1 diabetes mellitus (T1DM), an autoimmune disease. CD4+T cells plan the attack, while CD8+T cells kill the beta cells directly; causing insulin insufficiency and uncontrolled blood sugar levels (Mauvais & Van Endert, 2025). Both genetic susceptibility and environmental factors are involved in the development and progression of type 1 Diabetic by impairing immune homeostasis (Quinn *et al.*, 2021). Although type 1

diabetes is typically thought of as having a childhood origin, it can occur at any age and can be difficult to diagnose in adults because type 2 diabetes is more common (Thomas et al., 2018). In recent decades, the incidence of T1DM is rapidly increasing worldwide at a rate of 3-5% per year has been observed, T1DM one of the most common chronic metabolic diseases childhood and adolescence (Gregory et al., 2022). Recent study in Karbala province, Iraq, The average yearly incidence rate of T1DM was 12.11 per 100,000 (Oleiwi Jasim et al., 2023).

The aim of current study is to estimation the Serum levels of E- Selectin, it holds promise as prognostic marker of endothelial dysfunction for patients with Type 1 diabetic. Along with detection of single nucleotide polymorphisms (SNPs) of Toll-like Receptors 4 (TLR4) Asp299Gly (rs4986790) gene in patients with Type 1 diabetic.

METHODOLOGY

Participation and spacemen collection

A case control study was designed on a total of 150 subjects divided into Group one contains 75 (39 males and 36 females) patients with T1DM are diagnosed by specialist physicians. Group two comprised of 75 (37 males and 38 females) healthy control persons from volunteers were recruited for this study, the ages of all individuals ranged from (10-35) years. The collection of samples was carried out during the period from January 2024 to the end of June 2024. at Al Najaf Diabetes and Endocrine center in Al-Najaf AL-Ashraf province, Iraq.

Immunological technique

Estimation of Human Serum levels of E-Selectin

The sandwich kit is an Enzyme-Linked Immunosorbent Assay (ELISA). For measuring human serum E- Selectin are used for the accurate quantitative detection in serum in vitro, the manufacturing company Bioassay Technology Laboratory (BT-LAB, China).

Detection of TLR4 Asp299Gly Polymorphism

Amplification Reaction Mixture for TLR4 c.896A > G, Asp299Gly (rs4986790) was used by Primer sequence Forward 5'-G A T T A G C ATACTTAGACTACCTCCATG-3 'Primer sequence Reverse 5'-GATCAACTTCTGAAAAAGCATTCCCAC-3'with Length of digested fragments wild allele: 249 bp, recessive allele: 223 bp +26 bp and NcoI restriction enzyme (Nyati *et al.*, 2010), in single PCR reaction.

Statistical Analysis

Data were collected, summarized, analyzed and presented using statistical package for social sciences (SPSS) version 26, independent sample t-test can examine mean differences between any two groups. The Chisquare test $(\chi 2)$, and the results are given as the correlation coefficient (r) and the significance level (P). In order to detect the cutoff value that predict a positive finding, receiver operator characteristic (ROC) curve analysis was used with its corresponding area under the curve (AUC), accuracy level, sensitivity, specificity and level of significance (P). Odds ratio and 95% confidence interval was estimated to measure risk. The P value (< 0.05) or (P <0.01) P-value was regarded as highly significant.

RESULTS

Demographic Characteristics of Study Population

The mean age of patients was 19.48 ± 5.71 and that of control subjects was 21.42 ± 6.41 years and there was no significant difference between patients and control subjects in mean age (P= 0.119). The frequency distribution of patients and control subjects according to age groups was shown in table (1). Again, there was no significant difference in the frequency distribution of patients and control subjects according to age group (P= 0.249). Patients' group included 39 (52.0 %) males and 36 (48.0%) females, while, control group included 37 (49.3 %) males and 38 (50.7%) females and there was no significant difference in the frequency distribution of patients and control subjects according to sex (P = 0.744).

Regarding smoking, 11 (14.7%) of T1DM patients with positive smoking, whereas, 12 (16.0%) of healthy control group have positive smoking, and the difference was non-significant in the frequency distribution of patients and control subjects according to smoking (P= 0.821). The present finding,

which is the lack of significant difference in distribution of individuals in both groups according to age and sex, are a pre-requisite in order to avoid bias in such case control study.

Table (1): Demographic characteristics of T1DM patients and healthy control subjects.

Characteristic	T1DM patients <i>n</i> = 75	Healthy control n = 75	P	
Age (years)				
Mean ±SD	19.48± 5.71	21.42 ± 6.41	0.119	
Range	10–35years	10– 35 years	† NS	
<18, n (%)	36 (48.0%)	29 (38.7%)	0.249	
\geq 18, n (%)	39 (52.0%)	46 (61.3%)	¥ NS	
Sex				
Male, n (%)	39 (52.0 %)	37 (49.3 %)	0.744	
Female, n (%)	36 (48.0%)	38 (50.7%)	¥ NS	
M:F ratio	1.08:1	1:1.03	110	
Smoking status				
Smoking, n (%)	11 (14.7%)	12 (16.0%)	0.821	
Non-smoking, n (%)	64 (85.3%)	63 (84.0%)	¥ NS	

Body Mass Index (BMI), in both groups

The frequency distribution of T1DM patients and healthy control according to Body Mass Index (BMI) was shown in table (2). The proportion of T1DM patients with underweight (BMI <18.5 kg/m²) was 16 (21.3%), the proportion of T1DM patients with normal weight (BMI, 18.5 to <25 kg/m²) was 45 (60.0%), the proportion of T1DM patients with overweight (BMI, 25 to < 30 Kg/m²) was 11 (14.7%) and only 3 (4.0%) of T1DM patients have obesity (BMI \geq 30 kg/m²).

Healthy control enrolled in the present study was as the followings: 2 (2.7%) of healthy

control were underweight, 48 (64.0%) was normal weight, 21 (28.0%) was overweight and only 4 (5.3%) of healthy control have, and there was significant difference in the frequency distribution of both groups according to BMI categories (P= 0.003). Also there was significant difference in the frequency distribution of both group according to BMI and weight (P < 0.05). But there was non-significant difference in the frequency distribution of both group according to Height (P = 0.782).

Table 2: Body Mass Index (BMI) in both groups.

Characteristic	T1DM Patients <i>n</i> = 75	Healthy control n = 75	P				
Body Mass Index (BMI)							
Mean ± SD	21.57 ± 4.08	23.71 ± 4.09	0.041				
Range	14.8-38.4	18.2-39.6	† S				
Height							
Mean ± SD	155.00 ± 11.3	151.16 ± 13.11	0.782				
Range	103.0-188.0	75.0-173.0	† NS				
Weight		•					
Mean ± SD	43.44 ± 7.6	51.20 ± 10.7	0.022				
Range	24.0-110.0	12.0-85.0	† S				
BMI categories							
Under-weight, n (%)	16 (21.3%)	2 (2.7%)					
Normal weight, n (%)	45 (60.0%)	48 (64.0%)	0.003 ¥				
Overweight, n (%)	11 (14.7%)	21 (28.0%)	S S				
Obese, n (%)	3 (4.0%)	4 (5.3%)					

E-Selectin Serum level of in T1DM patients and control.

The comparison of serum E-Selectin level between T1DM patients and healthy control subjects has been carried. Mean levels of serum E-Selectin were $(6.99 \pm 1.19 \text{ and } 6.18 \pm 1.06)$

in T1DM patients and healthy control respectively; the level was highly significant higher than in patients group in comparison with healthy control (P < 0.001). As show in **Figure (1)**.

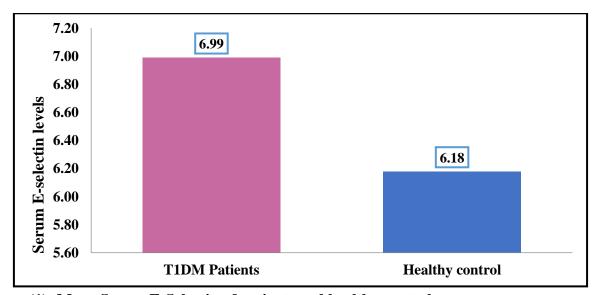


Figure (1): Mean Serum E-Selectin of patients and healthy controls.

Diagnostic Accuracy of E-Selectin level

Receiver operating characteristic (ROC) analysis was performed to reveal the prognostic accuracy of using E-Selectin concentrations to distinguish T1DM patients from healthy control subjects. An optimal E-Selectin cut-off value more than of 6.22 resulted in an AUC value of 0.619 (95% confidence interval [CI],

0.529-0.708, P= 0.003), sensitivity of 61.3%, specificity of 62.7%, PPV of 62.2%, and NPV of 61.8%. The present results indicate E-Selectin is considered as a weak prognostic marker to distinguish T1DM patients from healthy control. as show in **Figure (2)**.

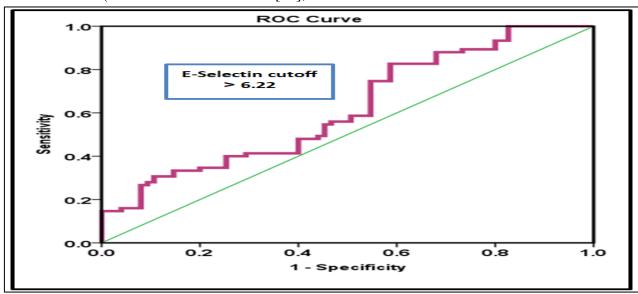


Figure (2): Receiver operator characteristic curve analysis of E-Selectin for the calculation of possible diagnostic cutoff value.

Detection TLR4 Asp299Gly (rs4986790) Polymorphism

The distribution of *Asp299Gly (rs4986790)* polymorphism was detected by PCR-RFLP technique; as show in **figure (3).**

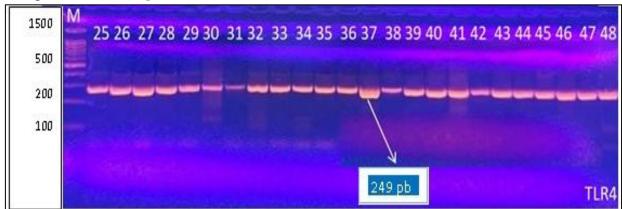


Figure (3): Agarose gel electrophoresis image that showed the PCR-RFLP product analysis of for TLR4 c.896A > G, Asp299Gly (rs4986790) genes polymorphism.

Where M: marker (1500-100bp). the lanes (AA) wild type homozygous were showed only A allele at 249bp PCR-RFLP product. Whereas the recessive allele did not find homozygous and heterozygous genotypes were showed as both A and G allele at 223bp+26bp PCR-RFLP product. The outer internal control was observed at 249bp PCR-RFLP product.

Genotypic and Alleles Analysis for studied gene in patients and control.

The comparison of genotypes and allele frequencies concerning *Asp299Gly (rs4986790)* SNP between T1DM patients and healthy control, is show in **Table (1)**.

Table (1): TLR4 Asp299Gly (rs4986790) genotype frequency in T1DM patients and healthy control.

Asp299Gly (rs4986790)	Patients <i>n</i> = 75	Control n = 75	P	OR	95% CI		
Genotype frequency							
Wild type	75 (100.0%)	75 (100.0%)					
Mutant type	0	0					
Allele frequency							
G	0	0					
A	150 (100.0%)	150 (100.0%)					

DISCUSSION

The globally increase the incidence and prevalence of T1DM approximately 3-5% per year has been reported (Barkai et al., 2019). These findings of this study, shown the higher prevalence (52.0%) of T1DM is in (\geq 18) age group. Although, traditionally associated with childhood onset, T1D can develop at any age, posing diagnostic challenges in adults due to the higher prevalence of type 2 diabetes (Thomas et al., 2018). The current study shown the results of smokers with T1DM was (14.7 %), compared with the of subjects infected with non-smokers, was (85.3.0%), and this is considered normal because the samples studied are mostly of children or teenager and that the nature of the disease, which affects the ages as autoimmune disease; therefore less percentage of smokers in these ages can be recorded. Regarding the mechanism of passive smoking promoting diabetes metabolism, some studies suggest that nicotine affects the function of islet cells and insulin (Yoshikawa et al., 2005).

Thus, children with T1D were more likely to be exposed to passive-smoking. The mean BMI of both group's T1DM and control 21.57 \pm 4.08 kg/m2 and 23.71 \pm 4.09 kg/m2, respectively. These results agree with another study by Knerr *et al.* patients diagnosed had a mean BMI of 21.6 kg/m2 (Knerr *et al.*, 2005).

The prevalence of underweight (21.3%) in this study was higher. Nevertheless, underweight as a risk factor for higher mortality has been supported by numerous studies (Conway *et al.*, 2010). A cohort study of children with T1DM showed a sharp increase in both overweight patients, from 28.6% to 47%, and obese patients, from 3.4% to 22.7%, over a period of 18 years (Conway *et al.*, 2010).

Given these findings, there is no evidence linking the AG or GG genotype of (rs4986790) SNPs in the TLR4 gene to an increased risk of patients with T1DM. A polymorphism in the TLR4 gene (rs4986790) was linked to a higher incidence of microvascular problems, particularly diabetic retinopathy, in patients with type 2 diabetes (Zhang et al., 2022). Another study, demonstrated a strong association (rs4986790) between polymorphism and the risk of infection with (HIV) human immunodeficiency virus (Kim et al., 2020). Furthermore, Meliț et al., (2019). Confirmed that (rs4986790) SNPs an increase the risk of infection of Helicobacter pylori (Meliţ et al., 2019).

CONCLUSION

According to the Receiver operating characteristic (ROC) analysis, in the present results indicates E-Selectin is considered as a weak prognostic marker to distinguish T1DM patients. Additionally, no such correlation was found into the *TLR-4* Asp299Gly (rs4986790) polymorphism in patients with T1D.

Ethical approval

The research was approved by the ethical committee of the Faculty of Medicine /AL-Qadisiyah University, and this research was performed with Al Najaf Diabetes and Endocrine center authorization.

REFERENCES

- Barkai, L., Kiss, Z., Rokszin, G., Abonyi-Tóth, Z., Jermendy, G., Wittmann, I., & Kempler, P. (2019). Changes in the incidence and prevalence of type 1 and type 2 diabetes among 2 million children and adolescents in Hungary between 2001 and 2016 a nationwide population-based study. Archives of Medical Science, 16(1), 34,41. https://doi.org/10.5114/aoms.2019. 88406.
- Conway B, Miller RG, Costacou T, Fried
 L, Kelsey S, Evans RW, et al. Temporal
 patterns in overweight and obesity in type
 1 diabetes. Diabet Med 2010; 27:398-404.
- Gregory, G. A., Robinson, T. I., Linklater,
 S. E., Wang, F., Colagiuri, S., de Beaufort,
 C., ... & Ogle, G. D. (2022). Global incidence, prevalence, and mortality of

- type 1 diabetes in 2021 with projection to 2040: A modelling study. *The lancet Diabetes & endocrinology*, 10(10), 741-760.
- Kim, Y, C. and Jeong, B, H.(2020). Strong Association of the rs4986790 Single Nucleotide Polymorphism (SNP) of the Toll-Like Receptor 4 (TLR4) Gene with Human Immunodeficiency Virus (HIV) Infection: A Meta-Analysis. Genes. 12(1):11-19.
- Knerr I, Wolf J, Reinehr T, Stachow R, Grabert M, Schober E, Rascher W, Holl RW. DPV Scientific Initiative of Germany and Austria. The 'accelerator hypothesis': Relationship between weight, height, body mass index and age at diagnosis in a large cohort of 9,248 German and Austrian children with type 1 diabetes mellitus. Diabetologia. (2005); 48, 2501–2504.
- Mauvais, F., & Van Endert, P. M. (2025).
 Type 1Diabetes: A guide to autoimmune mechanisms for clinicians. *Diabetes Obesity, and Metabolism*.
 https://doi.org/10.1111/dom.16460.
- Melit, L, E., Marginean, C, O., Banescu,
 C., Boglis, A., Mocan, S. and Iancu, M.
 (2019). The relationship between TLR4 rs4986790 and rs4986791 gene
 polymorphisms and Helicobacter pylori

- infection in children with gastritis. Pathol Res Pract. 215(12):152692-152694.
- Oleiwi Jasim, A.R., Abdul Razzaq, N.,
 Thoulfikar, A., Imeer, A., et al. (2023).
 Epidemiological profile and diabetes
 control of Type 1 Diabetes Mellitus
 patients in Karbala Governorate, Iraq.
 12:409
 https://doi.org/10.12688/f1000research.12

6561.1.

- Quinn, L, M., Wong, F, S., and Narendran P (2021). Environmental determinants of type 1 diabetes: from association to proving causality. Front. Immunol. 12, 737964
 https://doi.org/10.3389/fimmu.2021.73796
 4.
- Thomas NJ, Jones SE, Weedon MN, Shields BM, Oram RA, Hattersley AT. Frequency and phenotype of type 1 diabetes in the first six decades of life: a cross-sectional, genetically stratified survival analysis from UK Biobank Lancet Diabetes Endocrinol 2018; 6(2):122e9.
- Thomas, N. J., Jones, S. E., Weedon, M.
 N., Shields, B. M., Oram, R. A., & Hattersley, A. T. (2017). Frequency and phenotype of type 1 diabetes in the first six decades of life: a cross-sectional, genetically stratified survival analysis

- from UK Biobank. The Lancet Diabetes & Endocrinology, 6(2), 122–129. https://doi.org/10.1016/s2213-8587(17)30362-5.
- Yoshikawa H, Hellström-Lindahl E, Grill
 V. Evidence for functional nicotinic receptors on pancreatic beta cells.
 Metabolism. 2005; 54(2):247-254. Doi: 10.1016/j. metabol.2004.08.020.
- Zhang, Y., Li, H., Wang, C., Lv, H., and Fu, S. (2022). Toll like receptor 4 gene Asp299Gly polymorphism increases the risk of diabetic microvascular complications: a meta analysis.
 Diabetology & Metabolic Syndrome, 14:79 https://doi.org/10.1186/s13098-022-00849-2.