Main Article Content
Abstract
With advantages over physical and chemical methods from an economic and environmental standpoint, bioproduction possibilities for nanoparticles are becoming a very important topic. The current study's objective is to synthesis of reduced graphene oxide nanoparticles from Klebsiella oxytoca that cause urinary tract infections and characterized the synthesized biogenic nanoparticles by different method for characterization include Fourier transform infrared, energy dispersive spectroscopy, and scanning electron microscopy.
CONCLUSIONS
The isolated K.oxytoca from urinary tract infections have the ability to biosynthesized of reduced graphene oxide nanoparticles with size range from 35-85 nm and average diameter was 49.31 , the EDS determine the elemental analysis of rGO that contained carbon, oxygen, nitrogen, phosphate, and chloride and many active group detected by FTIR technique .
Keywords
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and surfaces B: Biointerfaces, 28(4), 313-318.
- Kashani, S. Y., Afzalian, A., Shirinichi, F., & Moraveji, M. K. (2021). Microfluidics for core–shell drug carrier particles–a review. RSC Advances, 11(1), 229-249.
- Clark, D., & Pazdernik, N. (2009). Molekulare Biotechnologie: Grundlagen und Anwendungen. Springer-Verlag.
- Dawadi, S., Katuwal, S., Gupta, A., Lamichhane, U., Thapa, R., Jaisi, S., ... & Parajuli, N. (2021). Current research on silver nanoparticles: Synthesis,characterization, and applications. Journal of Nanomaterials, 2021.
- Korbekandi, H., Iravani, S., & Abbasi, S. (2012). Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei. Journal of Chemical Technology & Biotechnology, 87(7), 932-937.
- .Kaviyarasu, K., Kanimozhi, K., Matinise, N., Magdalane, C. M., Mola, G. T., Kennedy, J., & Maaza, M. (2017). Antiproliferative effects on human lung cell lines A549 activity of cadmium selenide nanoparticles extracted from cytotoxic effects: investigation of bio-electronic application. Materials Science and Engineering: C, 76, 1012-1025.
- Brodie, B. C. (1859). XIII. On the atomic weight of graphite. Philosophical transactions of the Royal Society of London, (149), 249-259.
- Wu, Z. S., Ren, W., Gao, L., Zhao, J., Chen, Z., Liu, B., ... & Cheng, H. M. (2009). Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS nano, 3(2), 411-417.
- Ghosh, D. S., Calizo, I., Teweldebrhan, D., Pokatilov, E. P., Nika, D. L., Balandin, A. A., ... & Lau, C. N. (2008). Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters, 92(15), 151911.
- Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., ... & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science, 320(5881), 1308-1308.
- Rafiee, M. A., Rafiee, J., Srivastava, I., Wang, Z., Song, H., Yu, Z. Z., & Koratkar, N. (2010). Fracture and fatigue in graphene nanocomposites. small, 6(2), 179-183.
- Min, S. K., Kim, W. Y., Cho, Y., & Kim, K. S. (2011). Fast DNA sequencing with a graphene-based nanochannel device. Nature nanotechnology, 6(3), 162-165.
- Wang, Y., Li, Z., Wang, J., Li, J., & Lin, Y. (2011). Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in biotechnology, 29(5), 205-212.
- Paredes, J. I., Villar-Rodil, S., Martínez-Alonso, A., & Tascon, J. M. D. (2008). Graphene oxide dispersions in organic solvents. Langmuir, 24(19), 10560-10564.
- Chung, C., Kim, Y. K., Shin, D., Ryoo, S. R., Hong, B. H., & Min, D. H. (2013). Biomedical applications of graphene and graphene oxide. Accounts of chemical research, 46(10), 2211-2224.
- Wang, Y., Li, Z., Hu, D., Lin, C. T., Li, J., & Lin, Y. (2010). Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. Journal of the American Chemical Society, 132(27), 9274-9276.
- Bao, Q., Zhang, D., & Qi, P. (2011). Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. Journal of colloid and interface science, 360(2), 463-470.
- Halket, G., Dinsdale, A. E., & Logan, N. A. (2010). Evaluation of the VITEK2 BCL card for identification of Bacillus species and other aerobic endospore formers. Letters in applied microbiology, 50(1), 120-126.
- Youssef, A. M., Abdel-Aziz, M. S., & El-Sayed, S. M. (2014). Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus subtilis as packaging materials. International journal of biological macromolecules, 69, 185-191.
- Sathiyabama, M., & Parthasarathy, R. (2016). Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydrate Polymers, 151, 321-325.
- Du, W. L., Niu, S. S., Xu, Y. L., Xu, Z. R., & Fan, C. L. (2009). Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate polymers, 75(3), 385-389.
- Dong, Y., Ng, W. K., Shen, S., Kim, S., & Tan, R. B. (2013). Scalable ionic gelation synthesis of chitosan nanoparticles for drug delivery in static mixers. Carbohydrate polymers, 94(2), 940-945.
- Yien, L., Zin, N. M., Sarwar, A., & Katas, H. (2012). Antifungal activity of chitosan nanoparticles and correlation with their physical properties. International journal of Biomaterials, 2012.
- Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638-2650.
- Kosowska, K., Domalik-Pyzik, P., Nocuń, M., & Chłopek, J. (2018). Chitosan and graphene oxide/reduced graphene oxide hybrid nanocomposites–Evaluation of physicochemical properties. Materials Chemistry and Physics, 216, 28-36.