Main Article Content

Abstract

Background:  Fasting is the voluntary abstinence from food and drink for a fixed period of time while remaining faithful to certain rules. Fasting has been practiced by humans since ancient time.   Fasting involved in the regulation of many metabolic processes correlated with transitioning into a process capable of Energy production and carbon-based metabolism mainly from Tissue adipose and muscular parts. The differences in the levels in the blood hormones and metabolites help to lower and eventually defend normal cells from chemical insults in the cell division and metabolic activityFasting Can induce an anti-warburg response by reducing glucose absorption Carriers (GLUTs) and aerobic glycolysis and force cancer cells to Improve in oxidative phosphorylation (OxPhos); It improves efficiency in cancer cells and, subsequently, toxic products of reactive oxygen (ROS). DNA, p53, DNA damage , and death of the cells , particularly Chemotherapy response,Fasting serves as improving anti-tumour immunity By Fasting or FMD.


Conclusion Fasting regulates many physiological functions associated with transitioning into a process capable of producing energy and carbon-based metabolic activity mainly from adipose and muscular tissue., The fasting action is largely dictated by the levels of glucose, glucagon, insulin, GH, IGF1, and adrenaline in the blood.,Some many discrepancy in the rates at which hormones and metabolites circulate are normally found during fasting, allowing antitumor response . ,fasting reaction Protects significant nerves and glia but still doesn't prevent glioma or neuroblastoma, Cyclophosphamide, and pro-oxidant Compounds, and preserves the embryonic mouse Doxorubicide fibroblasts.

Keywords

Keywords: FASTING, IGF1, FMD, IGFBP1, GH.

Article Details

How to Cite
Abdullah Waheed, Z. ., Habeeb Sarhan , N. ., Mohammed Shaker, M., Mahmood Kadhim AL-Zubaidy, I., & Ghaleb Idreess, H. . (2022). The Role Fasting In Metabolism And Tumor Progressive. Medical Science Journal for Advance Research, 3(2), 48–54. https://doi.org/10.46966/msjar.v3i2.40

References

  1. Natarajan, S., Kannan, M., Sathiyarajeswaran, P., Gopakumar, K., Pandian, S. J. J., & Ramaswamy, R. S. FASTING-A MEDICO HISTORICAL OVERVIEW.‏
  2. Lee, C., Raffaghello, L., Brandhorst, S., Safdie, F. M., Bianchi, G., Martin-Montalvo, A., ... & Emionite, L. (2012). Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Science translational medicine, 4(124), 124ra27-124ra27.‏
  3. Raffaghello, L., Lee, C., Safdie, F. M., Wei, M., Madia, F., Bianchi, G., & Longo, V. D. (2008). Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proceedings of the National Academy of Sciences, 105(24), 8215-8220.‏
  4. Pelt, A. C. (2010). Glucocorticoids: effects, action mechanisms, and therapeutic uses. Nova Science Publishers, Incorporated.‏
  5. Khurana, I. (2008). Essentials of medical physiology. Intia: Elsevier India.‏
  6. Brandhorst, S., Wei, M., Hwang, S., Morgan, T. E., & Longo, V. D. (2013). Short-term calorie and protein restriction provide partial protection from chemotoxicity but do not delay glioma progression. Experimental gerontology, 48(10), 1120-1128.‏
  7. Brennan, A. M., & Mantzoros, C. S. (2006). Drug Insight: the role of leptin in human physiology and pathophysiology—emerging clinical applications. Nature clinical practice Endocrinology & metabolism, 2(6), 318-327.‏
  8. Raffaghello, L., Lee, C., Safdie, F. M., Wei, M., Madia, F., Bianchi, G., & Longo, V. D. (2008). Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proceedings of the National Academy of Sciences, 105(24), 8215-8220.‏
  9. Wei, M., Fabrizio, P., Hu, J., Ge, H., Cheng, C., Li, L., & Longo, V. D. (2008). Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet, 4(1), e13.‏
  10. Nencioni, A., Caffa, I., Cortellino, S., & Longo, V. D. (2018). Fasting and cancer: molecular mechanisms and clinical application. Nature Reviews Cancer, 18(11), 707-719.‏
  11. Brandhorst, S., Choi, I. Y., Wei, M., Cheng, C. W., Sedrakyan, S., Navarrete, G., ... & Di Biase, S. (2015). A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell metabolism, 22(1), 86-99.‏
  12. Cheng, Z., Guo, S., Copps, K., Dong, X., Kollipara, R., Rodgers, J. T., ... & White, M. F. (2009). Foxo1 integrates insulin signaling with mitochondrial function in the liver. Nature medicine, 15(11), 1307-1311.‏
  13. Brandhorst, S., Choi, I. Y., Wei, M., Cheng, C. W., Sedrakyan, S., Navarrete, G., ... & Di Biase, S. (2015). A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell metabolism, 22(1), 86-99.‏
  14. Chalkiadaki, A., & Guarente, L. (2015). The multifaceted functions of sirtuins in cancer. Nature Reviews Cancer, 15(10), 608-624.‏
  15. Yang, H., Yang, T., Baur, J. A., Perez, E., Matsui, T., Carmona, J. J., ... & de Cabo, R. (2007). Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell, 130(6), 1095-1107.‏
  16. Brennan, A. M., & Mantzoros, C. S. (2006). Drug Insight: the role of leptin in human physiology and pathophysiology—emerging clinical applications. Nature clinical practice Endocrinology & metabolism, 2(6), 318-327.‏
  17. Jardé, T., Perrier, S., Vasson, M. P., & Caldefie-Chézet, F. (2011). Molecular mechanisms of leptin and adiponectin in breast cancer. European journal of cancer, 47(1), 33-43.‏
  18. Pollak, M. (2012). The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nature Reviews Cancer, 12(3), 159-169.‏
  19. Newman, J. C., & Verdin, E. (2014). Ketone bodies as signaling metabolites. Trends in Endocrinology & Metabolism, 25(1), 42-52.‏
  20. Xia, S., Lin, R., Jin, L., Zhao, L., Kang, H. B., Pan, Y., ... & Zhang, B. (2017). Prevention of dietary-fat-fueled ketogenesis attenuates BRAF V600E tumor growth. Cell metabolism, 25(2), 358-373.‏
  21. Cheng, C. W., Adams, G. B., Perin, L., Wei, M., Zhou, X., Lam, B. S., ... & Kopchick, J. J. (2014). Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell stem cell, 14(6), 810-823.‏
  22. Xia, S., Lin, R., Jin, L., Zhao, L., Kang, H. B., Pan, Y., ... & Zhang, B. (2017). Prevention of dietary-fat-fueled ketogenesis attenuates BRAF V600E tumor growth. Cell metabolism, 25(2), 358-373.‏
  23. Cheng, C. W., Adams, G. B., Perin, L., Wei, M., Zhou, X., Lam, B. S., ... & Kopchick, J. J. (2014). Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell stem cell, 14(6), 810-823.‏
  24. Lee, C., Safdie, F. M., Raffaghello, L., Wei, M., Madia, F., Parrella, E., ... & Longo, V. D. (2010). Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer research, 70(4), 1564-1572.‏
  25. Di Biase, S., Lee, C., Brandhorst, S., Manes, B., Buono, R., Cheng, C. W., ... & Morgan, T. E. (2016). Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity. Cancer cell, 30(1), 136-146.‏
  26. Lee, C., Raffaghello, L., Brandhorst, S., Safdie, F. M., Bianchi, G., Martin-Montalvo, A., ... & Emionite, L. (2012). Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Science translational medicine, 4(124), 124ra27-124ra27.‏
  27. Nencioni, A., Caffa, I., Cortellino, S., & Longo, V. D. (2018). Fasting and cancer: molecular mechanisms and clinical application. Nature Reviews Cancer, 18(11), 707-719.‏
  28. Lee, C., Raffaghello, L., Brandhorst, S., Safdie, F. M., Bianchi, G., Martin-Montalvo, A., ... & Emionite, L. (2012). Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Science translational medicine, 4(124), 124ra27-124ra27.‏
  29. Lee, C., Raffaghello, L., Brandhorst, S., Safdie, F. M., Bianchi, G., Martin-Montalvo, A., ... & Emionite, L. (2012). Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Science translational medicine, 4(124), 124ra27-124ra27.‏
  30. Brennan, A. M., & Mantzoros, C. S. (2006). Drug Insight: the role of leptin in human physiology and pathophysiology—emerging clinical applications. Nature clinical practice Endocrinology & metabolism, 2(6), 318-327
  31. Nencioni, A., Caffa, I., Cortellino, S., & Longo, V. D. (2018). Fasting and cancer: molecular mechanisms and clinical application. Nature Reviews Cancer, 18(11), 707-719.
  32. Pietrocola, F., Pol, J., Vacchelli, E., Rao, S., Enot, D. P., Baracco, E. E., ... & Senovilla, L. (2016). Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer cell, 30(1), 147-160.‏
  33. Antunes, F., Erustes, A. G., Costa, A. J., Nascimento, A. C., Bincoletto, C., Ureshino, R. P., ... & Smaili, S. S. (2018). Autophagy and intermittent fasting: the connection for cancer therapy?. Clinics, 73.‏
  34. Antunes, F., Erustes, A. G., Costa, A. J., Nascimento, A. C., Bincoletto, C., Ureshino, R. P., ... & Smaili, S. S. (2018). Autophagy and intermittent fasting: the connection for cancer therapy?. Clinics, 73.‏ ‏